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Electrohydrodynamic instability in plane layers of fluid 

By D. H. MICHAEL AND M. E. O’NEILL 
Department of Mathematics, University College, London 

(Received 24 May 1968 and in revised form 24 May 1969) 

The instability of a plane layer of non-conducting fluid which is in hydrostatic 
equilibrium between two semi-infinite conducting fluids with surface charges 
is discussed for both inviscid and viscous fluid models. It is shown that for both 
the inviscid and viscous fluid cases, the criteria for instability are the same. 
Consideration is given to the relevance of the results in explaining the mechanism 
by which the presence of an electric field promotes more readily the coalescence 
of water droplets on a water surface by viewing the onset of disruption of the 
air film as the instability of the air film under the action of the electrostatic field 
produced by the surface charges on the water surfaces. 

1. Introduction 
In  a recent paper by Jayaratne & Mason (1964), a theoretical and experimental 

study was made of the bouncing and coalescence of small water droplets on a 
water surface. It was reported that coalescence of the droplets occurs more 
readily when electrostatic forces are present due to either a charge on the droplets 
or an extraneous electric field causing polarization of the droplets. Jayaratne & 
Mason estimated the magnitude of the electrostatic force of attraction when 
coalescence is induced and found that such forces are small compared with the 
dynamical forces acting on the droplets. It was therefore concluded that the 
electrostatic field promotes the coalescence of droplets indirectly by helping to 
disrupt the air film between the droplet and the water surface. One way in which 
a disruption can be viewed is by the instability of the air layer under the action 
of the electrostatic field produced by the surface charges on the water surfaces, 
and this has prompted the authors to consider the instability of such a layer of 
non-conducting fluid between two conducting fluids which have surface charges; 
in the equilibrium configuration of the system considered here, the interfacial 
surfaces are parallel planes. 

The problem considered has a similarity to the problem of gravity waves on 
the surface of a plane layer of conducting fluid under the influence of an electro- 
static field; this problem and a similar problem for a dielectric fluid layer have 
been discussed by Michael (1968) for both inviscid and viscous models. It was 
shown that the points of transition between stable and unstable modes of 
oscillation are the same in both inviscid and viscous fluids, and it may be con- 
jectured that these are particular cases of a general result, namely that where an 
incompressible fluid system in hydrostatic equilibrium in a Newtonian frame of 
reference is unstable due to the action of electrostatic surface forces, the stability 
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characteristics giving points of transition from stable to unstable oscillations 
are identical for viscous and inviscid fluids. Such a system is considered here and 
a comparison of viscous and inviscid oscillations made in this paper confirms the 
result for this case. 

2. Statement of the problem 
Two semi-inhite homogeneous incompressible conducting fluids are separated 

by a plane layer of non-conducting homogeneous incompressible fluid of depth 
2h. The outer layers are of the same fluid and are charged so that there are charges 
+ Q  and - Q  e.s.u. per unit area on the interfacial surfaces of the upper and 
lower fluids respectively. 

I I * 
X 

-Q 
FIGURE 1 

In the equilibrium state, there will be a normal stress 27rQ2 per unit area at the 
interfaces between the fluids due to the presence of the charges, and if II, and II, 
denote the hydrostatic pressures in the outer and inner fluid layers respectively, 
clearly 

We now consider the effect of small wave disturbances to the interfaces 
y = f h, given by 5, = 1, e2(kx-wt) and f = r2 ei(kx-wt) respectively, propagated in 
the positive x direction where x, y, z are Cartesian co-ordinates referred to axes 
such that y = 0 is the mid-plane of the inner layer and positive y is measured 
vertically upwards, as illustrated in figure 1. 

II, = I I o + 2 ~ Q 2 .  (2.1) 

3. The electric field 
The time scale of decay of charge in the conducting fluids is K/4ncr, where K 

is the dielectric constant and r the electrical conductivity of the fluids. If 
KJwl/47rr < 1,  this time scale is small by comparison with the time scale on 
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which the shape of the conducting surfaces change and it follows that in such 
circumstances the electromagnetic field throughout the fluids may be treated 
as electrostatic. Consequently, within the conducting fluids, the electric field is 
zero and within the non-conducting fluid layer which we shall suppose has free- 
space dielectric constant, the electric field E is given by 

E = -E,j- VX7 (3.1) 

where E, = 4nQ and V2x = 0 throughout the inner layer of fluid. Thus a suitable 
solution for x is of the form 

x = (B’sinh ky + G cosh ky)  ei(kX--Ot). (3.2) 

We note that for water the decay time is of the order of 10-4sec. Thus for 
wave disturbances on a water surface, only for oscillations with periods of this 
order or smaller need we consider deviations from electrostatic conditions. 

4. Instability of the disturbances when the fluids are inviscid 
In  each of the fluids, the equations governing the motion are 

av 1 
- = --VP, 
at P 

divV = 0, 

if gravity is neglected, where V is the small fluid velocity and P is the perturba- 
tion pressure. The motion is irrotational, so we may satisfy the equation of 
continuity if V = V# and # is given in the three fluid layers by 

where po and PI are the densities in the outer and inner fluid layers respectively. 
The conditions which must be satisfied at  the interfaces are: 

(1)  Tangential component of E i s  zero, which requires that 

which with x given by (3.2) in turn give 

p = - -  &?3,(q1 + 72) sech kh, G = - &%,(yl - q2)  cosech kh. (4.9) 

(2) Continuity of normal component of V, which requires that 



(4.10) 

(4.11) 

where T is the interfacial surface tension. These equations yield 

kE0 iwpoA e-kh = iwpl{C ekh + D e-kh} - Tk2yl - - {F Gosh kh + G sinh kh}, (4.12) 
477 

iwp, B ekh = iwp,{C e-kh+ D ekh} + Tk2q2 - 2 {F cosh kh - G sinh kh}. (4.13) 

t / 

8 

FIGURE 2 

Clearly equations (4.10) and (4.11) give A ,  B, C and D in terms of ql and q2. 
Substitution of these coefficients together with F and G from (4 .9 )  into (4.12) 
and (4.13) gives the following relations: 

[w2k-l(po +pl tanh kh) - Tk2 + (EE k /4n)  tanh kh] (ql + q2)  = 0, (4.14) 

[ W 2 k - l ( p 0  +plcoth kh) + Tk2 + (23; k / 4 ~ )  coth kh] (ql - qz) = 0. (4.15) 

We may thus consider independently the propagation of symmetric wave dis- 
turbances for which ql + q2 = 0 and antisymmetric wave disturbances for which 
q l - q 2  = 0. When ql = -q2 ,  equation (4.15) gives the dispersion relation 

w2 T k  - ( E ~ / ~ I T )  Goth kh 
(4.16) k2 po  +pl coth kh * 

The denominator in the right-hand side of equation (4.16) is positive, therefore 
the disturbances are unstable when 

8 tanh 8 < [ = E; h/4nT = 4nQ2h/T, 

_ -  - 
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where 8 = kh. Thus for a given value of c, disturbances are unstable for wave- 
numbers k < 8*/h where 8" tanh 8" = [ and furthermore, no matter how small 
the electric field E,, sufficiently long symmetric wave disturbances are always 
unstable. The unstable and stable regions of the (8,c) plane are indicated in 
figure 2. 

When ql = q2, equation (4.14) gives 

w2 
k2 po +pl tanh kh 

Tk - (EU4n) tanh kh _ -  - (4.17) 

Therefore the disturbances are unstable when 8 coth 8 < 6. Hence antisymmetric 
waves of sufficiently large wavelengths are stable or unstable according as is 
less than or greater than unity. The unstable and stable regions of the (8,E) plane 
are in this case shown in figure 3. 

Unstable / 

5. The instability of the disturbances when the fluids are viscous 
The equations now governing the motion of any of the fluid layers are to the 

first order in small quantities 

1 _ -  a' - -- V P +  VWV, d i v v  = 0, 
at P 

where again V and P are the fluid velocity and perturbation pressure respectively, 
v is the kinematic viscosity and gravity is neglected. The equations may be 
satisfied if the Cartesian components u, v of V are expressed in terms of a stream 
function Y defined by 

u = aYjay, v = - aY/ax, Y = $(y) ei(kx-wt), (5.2) 

where ( P - m 2 ) ( P - k 2 ) $  = 0; 
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m2 = k2-iw/v. 

The pressure is then given by P = p ( y )  ei(kz--wt), where 

(5.3) 

i~p(y) = pvD(D2-m2)$. (5.4) 

The boundary conditions which must now be satisfied at  the interfaces are as 

(1) Tangential component of E is zero. Equations (4.8) and (4.9) still hold for 

(2) Continuity of normal component of V. This requires that 

follows : 

viscous fluids. 

giving 

where $,, $,, $, are the y dependent parts of the stream functions appropriate 
for y > h, I yI < h, y < - h respectively. 

(3) Continuity of tangential component of V. This is satisfied when 

(4) Continuity of tangential stress. This condition is satisfied if 

POP2 + k2)$o(h) = P1 (D2 + k2)$l(h), (5.9) 

(5.10) 

wherep, and ,ul are the viscosities of the outer and inner fluid layers respectively. 

po(h)  + 2i,uOk$A(h) = pl(h)  + Zip, k$F;(h) - Tk2y,  - (E0/471.) ~ ' ( h )  e-i(kz-ot) , (5.11) 

POP2 + k2) $ A  - h) = lL1(D2 + k2)  $l( - h),  

( 5 )  Continuity of normal stress. This condition is satisfied if 

P A  - h)  + 2ip,k$&( - h)  
= p l (  - h)  + Sip, k$F;( - h)  + Tk2y,  - (EO/4n) x'( - h) e-i(kx-wt), (5.12) 

where p, ,  p l  and p ,  are pressures appropriate for y > h, I yI < h, and y < - h 
respectively. 

We may again treat the symmetric and antisymmetric parts of the disturbances 
independently. For symmetric wave disturbanccs of the interfaces y = h, 

gl = ysei(kX-d) = - Q. (5.13) 

Taking account of the symmetry of the fluid motions, a suitable form for the 
electrostatic potential x is given by (4.9) with G E 0, and suitable forms for 
the stream functions in the three fluid layers are given by 

@, = A e-ky+Be-mov (y 2 h), (5.14) 

$l = Csinhky+Dsinhm,y (lyl < h) ,  (5.15) 

$ 2 = - A e k u - B e 7 r 1 0 ~  (y < -h),  (5.16) 
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where mi = k2 - iw/v,, m4 = k2 = k 2 -  iw/v,. The corresponding pressures within 
the fluid layers will therefore be given by 

po = -wpoAe--kg, 

p z  = - upo A eky. 

p1 = up l  C cash ky, 

(5.17) 

(5.18) 

(5.19) 

Equations (5.5) to (5.10) may be easily shown to yield the following linear 

(5.20) 
equations : 

A* + B* = ~ k - l ~ ,  = C* + D*, 

POB* - PlD* = 2iJCVAP1- Po), (5.21) 

(k-m,)B*+ (kcothkh-m,cothm,h)D* = wy,(l+cothkh), (5 .22)  

C* = Csinh kh, 
where 

A* = A e-kh, B* = B e-moh, D* = D sinh m, h. 

On solving for A*, B*, C* and D* and substituting into (5.11) or (5.12), it is 
found that either ys = 0 or the following dispersion relation holds: 

{2ik(pu, -PI) (k - mo) +up,( 1 + coth kh)} 
x {2ik(p0 -p l )  [k  coth kh - m, coth m, h] - up l (  1 + coth kh)} 

{p,[kcothkh-m,cothm,h] +pl(k-m,)}  

+ 2ikw(pO-,~u,) (1 - coth kh) + w2k-l(pO -pl) - Tk2+ ( E i k / 4 7 ~ )  coth kh = 0. 
(5 .23)  

For antisymmetric wave disturbances of the interfaces y = h, 

Q = yaei(kz-ot) = < -2' (5.24) 

A dispersion relation for such wave disturbances can be similarly derived; it is 
found that the dispersion relation is given by (5.23) except that the hyperbolic 
tangent function now replaces the hyperbolic cotangent. Clearly the dispersion 
relations for both symmetric and antisymmetric wave disturbances are such 
that if w = w, +iw,,  where w, and wd are real, satisfies either of them, then so also 
does w = - w, + iw,. We may therefore without loss of generality assume that 
W(w)  >/ 0. 

Stability for small viscosities 

On writing n = vo/vl, where n remains finite as vl+ 0, equation (5.3) shows that 
as vl-+O, either I?n,l, lmll -+coor Im,J, lmll tend to limits according as lvlk2/wl 
does or does not approach zero with vl. Considering fist of all the situation when 
fv1k2/wJ -+ 0 as vl+ 0, equation (5.3) gives 

(5 .25)  

where a = i(1 -i) (2w)t  and we choose the signs of m, and m, so that W(m,), 
&?(m,) > 0. The dispersion relation (5.23) therefore gives 

vt + 0 ( vl h2/w)] 
kp,p,( 1 + coth kh)2 

a(p,n-t +p,cothm,h) 
= Tk-  (E;/4n)cothkh. (5.26) 

37 F L M  41 
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It is clear that the inviscid dispersion relation for symmetric wave disturbances, 
asgivenby(4.16)isrecoveredfrom (5.26)inthelimitv1+0. Onwritingo = w O + e  
where wo denotes a value of w when the fluids are inviscid and 6 is the small 
change in w due to the fluids having small viscosities, it may readily be shown 
that, provided wo =k 0, e is given to order vkk/wt by 

(5.27) 
1 wo + 
2 2  (po+plcothkh) (p,n-$+p,cothm,h)' 

kpopl( 1 + coth kh)2 v i  
€=-- ( - )  ( l+i)  

In either of the cases wo = i R  or wo = 
v l k 2 / Q ,  W(ml) B 0. Consequently 

C2 where R > 0, it is seen that for small 

e-- ( - )  1 wo a (l+i)  kpop,( 1 + coth kh)2ntvt 
2 2  (Po + P1 coth kh) (P1+ n h ,  . 

(5.28) 

Thus when wo = iR, in which case the inviscid mode of oscillation is unstable, 
the effect of the fluids having small viscosities is merely to reduce the growth 
rate of the disturbance compared with that of the inviscid mode and when 
wo = f R, the small viscosities cause a weak exponential damping of the dis- 
turbances compared with the stable inviscid mode of oscillation. When wo = - i R  
equation (5.27) shows that 

(5.29) 

This represents a valid perturbation of order v i  k/R* on the inviscid mode, but 
the behaviour of E is in this case complicated by the term cot [h( R/v,)~] appearing 
in the denominator which causes E to return to zero with increasing frequency 
as v1 -+ 0. 

We may in like manner determine the expressions for E corresponding to (5.28) 
and (5.29) when the wave disturbances at the interfaces are antisymmetric; we 
find that the expressions are the same as (5.28) and (5.29) with the circular and 
hyperbolic cotangents replaced respectively by circular and hyperbolic tangents. 
It is thus clear that for antisymmetric wave disturbances, the small change e 
in w from a non-zero inviscid value due to the fluids having small viscosities, 
decays to zero with the viscosities in all cases. 

To complete our analysis of the stability of the disturbances for small vis- 
cosities, we must consider the possibility of Iv,k2/wl + O  as vl+O, in which case 
w/k2-+ 0 as vl+O. Equation (5.23) or its counterpart taken in the limit as vl+O 
shows that this cannot occur except when 

kpopl( 1 + coth kh)2 n b i  
(po +pl Goth kh) (pl - in$pocot [h  (R/vm)  ' 

E N -@ 

Tk - (E3477) coth kh = 0, or 

respectively; that is for a point on one of the inviscid neutral stability curves 
shown in figures 2 and 3. The disturbances in these exceptional cases will 
represent the decay due to small viscosities of the steady state inviscid oscilla- 
tions associated with the points on the neutral stability curves. 

Tk - (E:/47r) tanh kh = 0, 

Stability for arbitrary viscosities 

For a stable mode of oscillation to change to an unstable mode or vice versa, 
$(w)  = 0 at transition. If we suppose that at transition W(w)  + 0, we can then 
construct a standing wave stream function which is purely oscillatory and of 
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the form 'I! = @(x, y) cos Qt where Q > 0. However in such a mode of oscillation, 
the kinetic, electrostatic and surface energies of the system are periodic in t with 
period 2n/Q which is clearly inconsistent with the action of viscosity in dissipating 
the energy of the system. It therefore follows that transition from stable modes 
to unstable modes or vice versa can only occur for viscous fluids as for inviscid 
fluids when w = 0. In the neighbourhood of transition w is small, so for symmetric 
wave disturbances, (5.23) gives for sufficiently small (wI, 

Zikwv, (np, - pl )  (1 - coth kh) 

- x [(pl-npO) (cothkh- khcosechgkh) -pl(l +cothkh)] 
np,[coth kh - kh cosech2 kh] +pl 

+ O ( w a / ~ : k 4 )  - Tk2+ (Egk/4n) coth kh = 0, (5.30) 

where n = uo/vl. Therefore to the first order, 

w = -1' 2 t ~ ~ 1  [Tk- (Eg/4n) coth kh] f, (5.31) 

where {np,[coth kh - kh cosech2 kh] +pl} f-l 

= nzp$(coth kh - kh cosechzkh) + np,p,( 1 + coth2 kh) 

+p:(coth kh + kh cosech2kh). 

Clearly f > 0 so transition occurs if and only if 

Tk = (Ef/4n) coth kh, (5.32) 

which is the same condition a t  transition of symmetric wave disturbances when 
the fluids are inviscid. Furthermore the disturbances are stable or unstable 
according as 

is positive or negative. 

for antisymmetric wave disturbances, 

Tk - (Egl4r) coth kh 

In a similar manner it can be shown that in the neighbourhood of transition 

6) = - q v - 1  [Tk - (Ei/4n) tanh kh] g, (5.33) 

where {np,[tanh kh + kh sech2 kh] +pl}g-l 

= n2pg(tanh kh + kh sech2 kh) + np,p,( 1 + tanh2 kh) 

+p2,(tanh kh - kh sech2 kh). 

It follows that since g > 0, w = 0 if and only if 

Tk = (Eg14n) tanh kh, (5.34) 

which is the condition for transition for antisymmetric wave disturbances when 
the fluids are inviscid. The disturbances are stable or unstable according as 

Tk - (Eg/4~) tanh kh 
is positive or negative. 
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In  the discussion for the modes of oscillation when v, and v1 are small, it was 
established that the oscillations grow with time when either 

(5.35) 
or Tk - (E&/4n) tanh kh < 0, (5.36) 

according as the wave disturbances are symmetric or antisymmetric. Thus 
assuming that the time dependence of any mode is a continuous function of v, 
and vlr it follows that for any values of vo and vl, all modes are unstable when 
(5.35) or (5.36) hold since transition to stability cannot occur. This result may 
also be seen from a slightly different point of view if we consider the way in which 
the value of w changes when E$ h/4nT changes for fixed values of 8, vo and vl. 
Here we may safely assert that when E,, = 0, all waves are damped and that for 
sufficiently large Eo there will be instability. If we assume that the value of w 
changes continuously with E,, we recover the above result that the stability 
characteristics shown in figure 2 or figure 3 apply equally in viscous and inviscid 
fluid models. 

Tk  - (E1/47~) Goth kh < 0, 

6. Conclusion 
In conclusion we consider the growth rates of small wave disturbances in the 

context of the problem discussed by Jayaratne & Mason (1964). The thickness 
of the air film is all 000, where a is the radius of the undistorted drop; the geometry 
of the theoretical model discussed in earlier sections would thus seem a satis- 
factory approximation to that of the physical model. If we take the values of the 
physical parameters given by Jayaratne & Mason, namely 

E, = 40,000 V/cm, T = 73 dynes/cm, 2h = 1.5 x em, 

as representative, we find that f ;  = Egh/4nT N 1.5 x Inequality (5.36) is 
never satisfied for any wave-numbers in this case, but (5.35) is satisfied for wave- 
numbers k < k* where k* - 1.6 x 103cm-l. The time scale on which symmetric 
wave disturbances with such wave-numbers grow is 7 where from (4.16), 

7 = ' J (  h(p0 tanh kh +pl)  
k T(t-khtanhkh) 

Using po = 1-0g/cm3, for water and p1 = 1-3 x 10-3g/cm3 for air in addition to 
the other given physical parameters, 7 exceeds 10-4sec for wave-numbers k 
such that either k < 3cm-l or k * - k  < 4cm-l. The time of contact between 
a droplet and the water surface before rupture of the air film occurs was found 
by Jayaratne & Mason to be in the range 10-3sec to 10-1 see; the contact time 
increasing as the angle of incidence at  which the droplet approaches the water 
surface decreases. Our theoretical investigation would thus suggest that in the 
physical model, disruption of the air film can take place by means of the rapid 
growth of wave disturbances of symmetric form which would bring the water 
surfaces together at  points where cl < 0 and c2 > 0. 
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